
www.manaraa.com

Word Embeddings - Skip Gram Model

P. Preethi Krishna(&) and A. Sharada

CSE Department, G. Narayanamma Institute of Technology and Science,
Hyderabad, Telangana, India

krishna.preethi95@gmail.com, sharada@gnits.ac.in

Abstract. Word embedding is of great importance for any NLP task. Word
embeddings is used to map a word using a dictionary to a vector. Skip gram
model is a type of model to learn word embeddings. This model will predict the
surrounding words based on the given input words which are within the given
distance. It aims to predict the context from the given word. Words occurring in
similar contexts tend to have similar meaning. Therefore it can capture the
semantic relationship between the words. This paper explains about the word
embedding using skip gram model, its architecture and implementation.

Keywords: Word embedding � Skip gram model � Hot encoded vector

1 Introduction

The web has a voluminous vocabulary of words. Each word gives a subjective and
objective meaning for a sentence. Every word can be sensed differently based on the
situation or context [11]. With the rapid inclusion of Natural Language Processing
(NLP) tasks [2] there is a need to consider all words, relationships between words,
synonyms, and antonyms based on context. Instead of machine learning methodologies
deep learning methodologies are being considered in all research works. Deep learning
considers the neural network structure which consists of neurons as our basic element
to work on [6]. At a stretch we can work on a huge amount of data by using these
neurons. So for embeddings of large words this skip gram model is a good choice [5].

1.1 Word Embeddings

NLP requires words to be represented in numerical format to do manipulations as it is
incapable to process any text or string [7]. Word embedding will map a word to a
vector using a dictionary [13]. The meaning of a word can be approximated by the set
of contexts in which it occurs. Words with similar vectors are semantically similar in
meaning as vector encoding capture the semantic of the word. The vector represen-
tation is termed as hot encoded vector. Hot encoded vector is represented with only 0’s
and 1’s. 1 is represented for the position of the input word in the sentence and 0 for all
other words in that sentence. These vectors help us to encode the semantic relationship
among the other words.

© Springer Nature Singapore Pte Ltd. 2020
V. K. Gunjan et al. (Eds.): ICICCT 2019 – System Reliability, Quality Control,
Safety, Maintenance and Management, pp. 133–139, 2020.
https://doi.org/10.1007/978-981-13-8461-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8461-5_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8461-5_15&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-13-8461-5_15&domain=pdf
https://doi.org/10.1007/978-981-13-8461-5_15

www.manaraa.com

Example representation for hot encoded vector. For the sentence “The cat jumped
over the puddle”,

The = [1 0 0 0 0 0]
Cat = [0 1 0 0 0 0]
Jumped = [0 0 1 0 0 0]
Over = [0 0 0 1 0 0]
The = [0 0 0 0 1 0]
Puddle = [0 0 0 0 0 1]
Word embeddings can perform few tasks like finding the degree of similarity

between two words, finding odd one out, probability to find a text under the document
etc. Few applications of word embedding are like machine translation, sentiment
analysis, named entity recognition, chat bots and so on.

1.2 Skip Gram Model

Skip gram model aims to predict the context words for given input word. The idea
behind skip gram model is to take a word and predict all the related contextual words.
In other words, it will predict the context when a word is given. Skip gram model is
built on word embeddings. It’s an extended version of N-gram model where instead of
including consecutive words we can go for skipping of words while considering
mapping.

In skip gram model a simple neural network with a single hidden layer is used.
Main intuition behind this model is that given a word w<k> at the kth position within a
sentence it will predict the most probable surrounding context. The word is represented
as its index ‘i’ within the vocabulary V and fed into a projection layer that turns this
index into a continuous vector given by the corresponding ith row in the layer weight
matrix.

Skip gram model belong to prediction-based vector which works more efficiently
with small training dataset. Even infrequent words are also well presented using this
model. Words occurring in similar contexts tend to have similar meanings. Therefore, it
can capture the semantic relationship between the words. So, this model is like a simple
logistic regression (Softmax) model.

2 Architecture

Skip grammodel architecture considers a vocabulary of all distinct words [1, 7, 8, 14, 15].
These distinct words are fed into the input layer of the model. The number of nodes in the
hidden layer represents the dimensionality of the system. Hidden layer is represented as a
weight matrix. In weight matrix rows count is the number of words present in the
vocabulary and column count is the number of neurons.

134 P. Preethi Krishna and A. Sharada

www.manaraa.com

For example, if we are learning with 300 features then will have 300 columns. If we
have 10000 rows one for each word in vocabulary then the weight matrix will be like:

The evaluation in hidden layer is just like a lookup table. The output layer is a
Softmax regression classifier. Each output neuron i.e. one per word in vocabulary will
produce an output between 0 and 1 and the sum of all these output values will sum up
to 1. So, in skip gram model target word is fed at the input, the hidden layer remains the
same and the output layer is replicated multiple times to accommodate the input and
context words (Fig. 1) [14].

3 Working Principle

The training objective of the Skip-Gram model is to learn word vector representations
that are good at predicting nearby words in the associated context. This model has an
input layer, a single hidden layer and an output layer. Hidden layer is made of neurons.
All unique words in vocabulary are given to input layer. We select a central word to
perform the mapping. For the selected central word search is performed to find the
nearest words in sequence, semantically or logically related words. The input to the
network is encoded using “1-out of-V” representation meaning that only one input line
is set to one and rest of inputs are set to zero.

Fig. 1. Skip gram model architecture

Word Embeddings - Skip Gram Model 135

www.manaraa.com

Firstly, a vocabulary of words should be created. Then encode it as vectors of 0’s &
1’s. The functionality is like; each current word i.e. target word is passed to the input
layer which is further passed to the hidden layer. Simply the word is copied to the
hidden layer. Now based on the skip window size the mapping to related words is done.
These are passed to the output layer. Here at output layer the pair of words (target,
context) with sum equivalent to one is considered as the output.

3.1 Implementation

Simple steps involved for implementation of skip gram model:

(i) Build a corpus or dataset & vocabulary which should be used. A vocabulary is
like a dictionary with all distinct words from corpus should be arranged in
alphabetical order. Indexes are assigned for the unique words. Preprocessing
step of case normalization, removing space, removing punctuation, tokenization
should be done. This vocabulary is helpful like a look-up table for mapping
words to meaning.

(ii) Build a skip-gram generator of format (target, context) where target word is the
word for which we need to find the neighboring words which are the required
context words. In the output when label value is 0 it means it is irrelevant else if
value is 1 means it’s relevant.

(iii) Build the skip gram model architecture where at input layer skip gram generator
format input is passed to get the related context words at the output layer.

(iv) Train the model to get the functionality run even when new words are added.
After training similar words with similar weights gives out the same values as
similarity words.

Input matrix representation is as [8]:

W11 W12 W13

W21 W22 W23

W31 W32 W33

W41 W42 W43

W51 W52 W53

Where,
W11 – weight of neuron from a node w1 to h1
W12 – weight of neuron from a node w1 to h2
W is weight defined in input layer for the word
h is the weight defined in hidden layer for that word
Function of input to hidden layer connection is basically to copy the input word

vector to hidden layer. We define a window called “skip-window” which is the number
of word movement back and forth from the selected words. The input words are
converted to a numerical representation.

136 P. Preethi Krishna and A. Sharada

www.manaraa.com

The output matrix is represented as:

W'
11 W'

12 W'
13 W'

14 W'
15

W'
21 W'

22 W'
23 W'

24 W'
25

W'
31 W'

32 W'
33 W'

34 w'
35

Where,
W0

11 – weight of neuron from a node h1 to O11

h is the weight in hidden layer
o is the weight in output layer
The input matrix and output matrix values are initialized to some small random

values as per the neural network training method.
After all the steps are finished and plotted on a graph we can see that all similar

words are grouped together, and dissimilar words are plotted apart.

Evaluation/Example
Consider the sentences, “the dog saw a cat”, “the dog chased the cat”, “the cat

climbed a tree” [10, 12]. The corpus vocabulary has eight words when ordered
alphabetically. Following are the eight words in the vocabulary:

A
Cat
Chased
Climbed
Dog
Saw
The
Tree

The skip gram generator format for the “the dog saw a cat” sentence will be (the,
dog), (the, saw), (the, a), (the, cat), (dog, saw), (dog, a), (dog, cat), (saw, a), (saw, cat),
(a, cat). Similarly, for other sentences also this format is generated (Fig. 2) [12, 15].

For the sentence “the cat climbed a tree”, the input in the form of (word, target) will
be (the, cat), (the, climbed), (the, a), (the, tree), (cat, climbed), (cat, a), (cat, tree),
(climbed, a), (climbed, tree), and (a, tree). These are passed to hidden layer in hot coded
vector format from input layer. Skip gram model is based on context so when the input
is cat and target is climbed it will find all its related and nearest words. When the
hidden layer finds the map (cat, climbed) it had successfully searched the target based
on context input provided. So input vector is [0 1 0 0 0 0 0 0] and output vector is [0 0
0 1 0 0 0 0].

To improve the accuracy with respect to finding target word based on multiple
context words we can include a parameter called “window”. If the value of window is 5
then for the given input word it will find 5 nearest words pointed as target. When a
perfect match of word and target is found then it is the required output from the model.

Word Embeddings - Skip Gram Model 137

www.manaraa.com

Output of the kth neuron is computed as

Yk ¼ PrðwordkjwordcontextÞ ¼ expðactivationðkÞÞ �
Xv

n¼1

exp ðactivationðnÞÞ

Where activation (n) represents the activation value of the nth output layer neuron
[4, 9].

4 Conclusion

Skip gram model is useful for word embedding where we can find out surrounding
context words for the given input or target word [3]. In other words, it outputs the
contextually related words for the given input word. This model is built on concept of
neurons because neurons help to do large computation with effective performance and
efficiency. It can even capture two semantics for a single word. It can be used for
sentiment analysis from multidomain. This model works well with a small amount of
the training data, even with rare words or phrases. This word embedding is of much use
nowadays for NLP tasks to be carried out. Word embedding is used to figure out better
word representations than the existing ones.

Fig. 2. Representation of example

138 P. Preethi Krishna and A. Sharada

www.manaraa.com

References

1. Alex Minnaar - Word2Vec Tutorial part I: The skip-gram model, April 2015
2. Chaubard, F., Mundra, R., Socher, R.: CS 224D: Deep Learning for NLP1 1 Lecture Notes:

Part I2 2. Spring (2016)
3. Guthrie, D., Allison, B., Liu, W., Guthrie, L., Wilks, Y.: A closer look at skip-gram

modelling. In: LREC (2006)
4. Maillard, J., Clark, S.: Learning adjective meanings with a tensor-based skip-gram model.

In: 19th Conference on Computational Language Learning, Beijing, China, 30–31 July,
pp. 327–331 (2015)

5. Ma, L., Zhang, Y.: Using Word2Vec to process big text data. In: 2015 IEEE International
Conference on Big Data (Big Data) (2015)

6. Dragoni, M., Petrucci, G.: A neural word embeddings approach for multi-domain sentiment
analysis. IEEE Trans. Affect. Comput. 8(4) (2017)

7. Bhoir, S., Ghorpade, T., Mane, V.: Comparative analysis of different word embedding
models (2017)

8. Levy, O., Goldberg, Y.: Dependency-based word embeddings
9. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of

words and phrases and their compositionality. In: Advances in Neural Information
Processing Systems, vol. 26, October 2013

10. Word embedding. sebastianruder.com/word-embedding-1/. Accessed 15 Aug 2016
11. Goldberg, Y., Levy, O.: Word2vec explained: deriving Mikolov et al.’s negative-sampling

word-embedding method (2014)
12. http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
13. http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-

learning-with-tensorflow-skip-gram/
14. https://iksinc.online/tag/skip-gram-model/
15. https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

Word Embeddings - Skip Gram Model 139

http://sebastianruder.com/word-embedding-1/
http://mccormickml.com/2016/04/19/word2vec-tutorial-the-skip-gram-model/
http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/
http://www.thushv.com/natural_language_processing/word2vec-part-1-nlp-with-deep-learning-with-tensorflow-skip-gram/
https://iksinc.online/tag/skip-gram-model/
https://towardsdatascience.com/word2vec-skip-gram-model-part-1-intuition-78614e4d6e0b

	Word Embeddings - Skip Gram Model
	Abstract
	1 Introduction
	1.1 Word Embeddings
	1.2 Skip Gram Model

	2 Architecture
	3 Working Principle
	3.1 Implementation

	4 Conclusion
	References

